3 research outputs found

    Superconducting Nonlinear Kinetic Inductance Devices

    Get PDF
    We describe a novel class of devices based on the nonlinearity of the kinetic inductance of a superconducting thin film. By placing a current-dependent inductance in a microwave resonator, small currents can be measured through their effect on the resonator’s frequency. By using a high-resistivity material for the film and nanowires as kinetic inductors, we can achieve a large coefficient of nonlinearity to improve device sensitivity. We demonstrate a current sensitivity of 8 pA/&#8730;Hz, making this device useful for transition-edge sensor (TES) readout and other cutting-edge applications. An advantage of these devices is their natural ability to be multiplexed in the frequency domain, enabling large detector arrays for TES-based instruments. A traveling-wave version of the device, consisting of a thin-film microwave transmission line, is also sensitive to small currents as they change the phase length of the line due to their effect on its inductance. We demonstrate a current sensitivity of 5 pA/&#8730;Hz for this version of the device, making it also suitable for TES readout as well as other current-detection applications. It has the advantage of multi-gigahertz bandwidth and greater dynamic range, offering a different approach to the resonator version of the device. Finally, we also demonstrate a transmission-line resonator version of the device that combines some of the advantages of the nanowire resonator and the traveling-wave device. This version of the device has high dynamic range but can also be easily multiplexed in the frequency domain. A lumped-element resonator similar to the first device can be placed in a loop configuration to make it sensitive to magnetic fields. We demonstrate an example of such a device whose sensitivity could ultimately reach levels similar to those of state-of-the-art DC SQUIDs, making it potentially useful for many magnetometry applications given its ease of multiplexing. Finally, a similar microwave resonator is shown to exhibit parametric gain of up to 29 dB in the presence of a strong pump tone. The noise performance of this parametric amplifier approaches the quantum limit, making it useful for applications in quantum information and metrology.</p

    HOP Queue: Hyperspectral Onboard Processing Queue Demonstration

    Get PDF
    The HOP Queue (Hyperspectral Onboard Processing Queue) demonstration leverages emerging COTS AI accelerators and GPUs to perform on-board processing of hyperspectral imagery data, with the aim of providing near- real time conservation-oriented data and metrics from Low Earth Orbit (LEO). These include forest health, fire detection, and coastal water health. Phase 1 of this project is currently underway, including a completed lab demonstration of this technology and ongoing flight testing. The data from this mission will support Northrop Grumman’s enterprise “Technology for Conservation” campaign and will be provided to NASA’s Surface Biology and Geology (SBG) organization, as well as other conservation efforts

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    No full text
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P &lt; 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore